

40 Gbps NRZ Medium Output Voltage Driver

DRIVER

FEATURES

- Output voltage 6.3 V
- Flat gain up to 40 GHz
- Single voltage power supply
- Gain and crossing point adjustment

APPLICATIONS

- LiNbO₃ & InP modulators
- 40 Gbps 44 Gbps NRZ / RZ
- SONET OC-768 / SDH-256
- Research & Development

OPTIONS

- Heat-sink
- Analog version
- Low output voltage version for EAM

RELATED EQUIPMENTS

- MX-LN-40, MXAN-LN-40 modulators
- MBC-DG Automatic Bias Controllers

The DR-DG-40-MO is a driver module optimized for digital applications at 40 Gbps – 44 Gbps data rate. It exhibits an output voltage of 6.3 V_{pp} and a broad bandwidth of 40 GHz.

The DR-DG-40-MO is housed in a compact package that integrates voltage regulators allowing for flexible biasing, while internal bias sequencing circuitry assures robust operation and single voltage power supply for maximum ease of use. It features two control inputs: one for gain control, the second one for crossing point adjustment. The RF connectors are V type, allowing easy and repeatable connections.

The DR-DG-40-MO combines high performance and user friendliness, it is the ideal device to drive 40 Gbps modulators and to obtain widely opened optical eye diagrams with short jitter and high SNR.

Performance Highlights

Parameter	Min	Тур	Max	Unit
Cut-off Frequencies	50 k	-	40 G	Hz
Output Voltage	-	6.3	-	V _{pp}
Gain	-	26	-	dB
Saturated Power	20	-	-	dBm
Added Jitter	-	0.75	-	ps
Rise / Fall Times	-	9	12	ps

Measurements for V $_{\rm bias}$ = 8 V, V $_{\rm amp}$ = 2.1 V, V $_{\rm xp}$ = 1.7 V, I $_{\rm bias}$ = 282 mA

40 Gbps Output Response

DRIVER

DC Electrical Characteristics

Parameter	Symbol	Min	Тур	Мах	Unit
Supply voltage (fixed)	V_{bias}	7	8	12	V
Current consumption	I _{bias}	-	300	350	mA
Gain control voltage	V _{amp}	0	1.5	2	V
Cross point control voltage	V _{xp}	0	0.8	2.5	V

Electrical Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Lower frequency	f _{3db} , lower	-3 dB point	-	-	50	kHz
Upper frequency	f _{3db} , upper	-3 dB point	36	40	-	GHz
Gain	S ₂₁	Small signal	-	26	-	dB
Gain ripple	-	< 40 GHz	-	±1.5	-	dB
Input return loss	S ₁₁	50 MHz < f < 30 GHz	-	-10	-	dB
Output return loss	S ₂₂	50 MHz < f < 30 GHz	-	-10	-	dB
Saturated power	P _{sat}	$V_{in} = 0.45 V_{pp}$	20	-	-	dBm
Output voltage	V _{out}	$V_{in} = 0.45 V_{pp}$	-	6.3	6.5	V _{pp}
Rise time / Fall time	t _r /t _f	20 % - 80 %	-	9	12	ps
Added jitter	J _{RMS}	$J_{RMS} = \sqrt{J_{RMS-total}^2 - J_{RMS-source}^2}$	-	0.75	-	ps
Power dissipation	Р	$V_{out} = 6.3 V_{pp}$	-	2.4	-	W

Conditions: $V_{in} = 0.65 V_{pp'} T_{amb} = 25 \text{ °C}$, 50 Ω system

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Max	Unit
RF input voltage	V _{in}	-	1	V _{pp}
Supply Voltage	V_{bias}	0	12	V
DC current	l _{bias}	0	350	mA
Gain control voltage	V _{amp}	0	2	V
Cross point control voltage	V _{xp}	0	2.5	V
Power dissipation	P _{diss}	-	4.2	W
Temperature of operation	T _{op}	0	40	°C
Storage temperature	T _{st}	-20	+70	°C

40 Gbps NRZ Medium Output Voltage Driver

DRIVER

S₂₁ Parameter Curve

S₂₂ Parameter Curve

Conditions: $V_{\text{bias}} = 12 \text{ V}$, $V_{\text{amp}} = 1.5 \text{ V}$, $V_{\text{xp}} = 0.8 \text{ V}$, $I_{\text{bias}} = 300 \text{ mA}$

S₁₂ Parameter Curve

Conditions: $V_{bias} = 12 \text{ V}, V_{amp} = 1.5 \text{ V}, V_{xp} = 0.8 \text{ V}, I_{bias} = 300 \text{ mA}$

Group Delay Parameter Curve Conditions: V_{bias} = 12 V, V_{amp} = 1.5 V, V_{xp} = 0.8 V, I_{bias} = 300 mA

S₁₁ Parameter Curve

Conditions: $V_{bias} = 12 \text{ V}, V_{amp} = 1.5 \text{ V}, V_{xp} = 0.8 \text{ V}, I_{bias} = 300 \text{ mA}$

Typical Output Voltage Amplitude VS Gain Control Vamp Tuning Conditions: V_{bias} = 12 V, V_{xp} = 1.7 V

DRIVER

Eye Diagrams

Eye amplitude = $0.45 V_{pp}$

Eye amplitude = $5.8 V_{pp}$

$\begin{array}{l} \textbf{40 Gbps data rate} \\ \textbf{Conditions: Ratio 1/2, Pattern 2^{31}-1} \\ \textbf{V}_{bias} = 8 \text{ V, } \textbf{V}_{amp} = 2.7 \text{ V, } \textbf{V}_{xp} = 1.7 \text{ V, } \textbf{I}_{bias} = 282 \text{ mA} \end{array}$

 $\begin{array}{c} \textbf{28 Gbps data rate} \\ \textbf{Conditions: Ratio 1/2, Pattern 2^{31}-1} \\ \textbf{V}_{bias} = 8 \text{ V, V}_{amp} = 2.1 \text{ V, V}_{xp} = 1.7 \text{ V, I}_{bias} = 282 \text{ mA} \end{array}$

Input signal Eye amplitude = 0.45 V_{pp}

Output response Eye amplitude = 6 V_{pp}

DRIVER

Electrical Schematic Diagram

Mechanical Diagram and Pinout

All measurements in mm

The heat-sinking of the module is necessary. It's user responsability to use an adequate heat-sink. Refer to page 6 for iXblue recommended heat-sink.

PIN	Function	Unit	
IN	RF In	V connector female	
OUT	RF Out	V connector male	
V_{bias}	Power supply voltage	Set a typical operating specification	
V _{amp}	Output voltage amplitude adjustment	Adjust for gain control tuning	
V _{xp}	Output voltage cross point adjustment	Adjust for cross point control tuning	

DRIVER

$\begin{array}{l} \mbox{Mechanical Diagram And Pinout With HS-MO4 Heat-sink} \\ \mbox{All measurements in mm} \end{array}$

About us

iXblue Photonics produces specialty optical fibers and Bragg gratings based fiber optics components and provides optical modulation solutions based on the company lithium niobate (LiNbO₃) modulators and RF electronic modules. iXblue Photonics serves a wide range of industries: sensing and instruments, defense, telecommunications, space and fiber lasers as well as research laboratories all over the world.

3, rue Sophie Germain 25 000 Besançon - FRANCE Tel. : +33 (0)1 30 08 87 43 iXblue reserves the right to change, at any time and without notice, the specifications, design, function or form of its products described herein. All statements, specification, technical information related to the products herein are given in good faith and based upon information believed to be reliable and accurate at the moment of printing. However the accuracy and completeness thereof is not guaranteed. No liability is assumed for any inaccuracies and as a result of use of the products. The user must validate all parameters for each application before use and he assumes all risks in connection with the use of the products