# **QDL**ASER

# QLD1061

1064 nm DFB Laser Butterfly Package

C00033-10 August 2015



# 1. DESCRIPTION

The QLD1061 is a 1064-nm distributed feedback (DFB) laser for use in seeder for fiber lasers and sensing applications. The laser is assembled into a 14-pin butterfly package with an optical isolator, a monitor PD and a thermo-electric cooler.

# 2. FEATURES

- Single longitudinal mode operation at 1064 nm
- Fiber-pigtailed 14-pin butterfly package with a TEC
- Optical isolator integration
- Polarization maintaining fiber integration
- CW/Pulse operation

# 3. APPLICATIONS

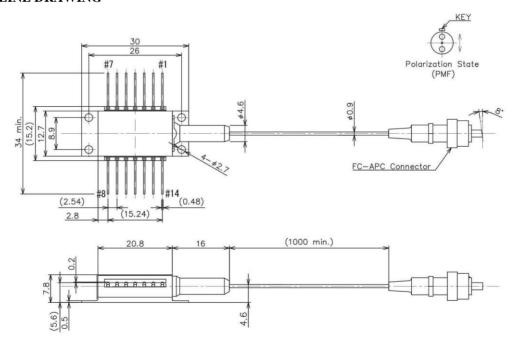
- Seeder for fiber lasers
- Sensing

# 4. ABSOLUTE MAXIMUM RATINGS

| PARAMETER                               | SYMBOL           | RATING    | UNIT |
|-----------------------------------------|------------------|-----------|------|
| Optical Output power (CW)               | $P_{\mathrm{f}}$ | 50        | mW   |
| LD Forward Current (CW)                 | $I_{\mathrm{F}}$ | 250       | mA   |
| Peak Output power (Pulse 10 ns / 1 MHz) | $P_{f\_pulse}$   | 150       | mW   |
| LD Peak Current (Pulse 10 ns / 1 MHz)   | $I_{F\_pulse}$   | 600       | mA   |
| LD Reverse Voltage                      | $V_{RLD}$        | 2         | V    |
| TEC Drive Current                       | $I_{TEC}$        | 2         | A    |
| TEC Drive Voltage                       | $V_{TEC}$        | 4.3       | V    |
| Operation Temperature                   | $T_{c}$          | 0 to 60   | °C   |
| Storage Temperature                     | $T_{ m stg}$     | -40 to 85 | °C   |
| Lead Soldering Temperature (5 s)        | $T_{\rm sld}$    | 230       | °C   |



QLD1061 C00033-10


# 5. OPTICAL AND ELECTRICAL CHARACTERISTICS

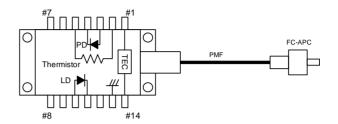
 $(T_{LD} = 25$ °C, unless otherwise specified)

|                                        |                        |                                                  | ( I LD 20 | e, amess | other wise | specifica) |
|----------------------------------------|------------------------|--------------------------------------------------|-----------|----------|------------|------------|
| PARAMETER                              | SYMBOL                 | TEST CONDITION                                   | MIN       | TYP      | MAX        | UNIT       |
| Peak Wavelength                        | $\lambda_{\mathrm{p}}$ | CW, P <sub>f</sub> =30 mW                        | 1059*     | 1064     | 1069*      | nm         |
| Temperature Coefficient of $\lambda_p$ | $d\lambda_p/dT$        | CW                                               | -         | 0.08     | -          | nm/K       |
| Current Coefficient of $\lambda_p$     | $d\lambda_p/dI$        | CW                                               | -         | 0.008    | -          | nm/mA      |
| Threshold Current                      | $I_{th}$               | CW                                               | -         | 15       | 20         | mA         |
| CW Fiber Output Power                  | $P_{\rm f}$            | CW                                               | 30        | -        | -          | mW         |
| Pulsed Peak Output Power               | $P_{f\_peak}$          | 5 ns / 100 kHz                                   | -         | 100      | -          | mW         |
| Operation Current                      | $I_{op}$               | $CW, P_f = 30 \text{ mW}$                        | -         | 110      | 160        | mA         |
| Operation Voltage                      | $V_{op}$               | CW, P <sub>f</sub> =30 mW                        | -         | 1.5      | 1.8        | V          |
| Pulsed Peak Operation Current          | I <sub>op_peak</sub>   | $P_{f\_peak} = 100 \text{ mW}$                   |           | 320      | -          | mA         |
| Pulse Width                            | $t_{pw}$               | Pulsed                                           | 0.05**    | -        | 100        | ns         |
| Duty Cycle                             | D.C.                   | Pulsed                                           | -         | -        | 2          | %          |
| Sidemode Suppression Ratio             |                        | $CW, P_f = 30 \text{ mW}$                        | 30        | 50       | -          | dB         |
|                                        | SMSR                   | Pulsed 4 ns / 1 MHz / P <sub>f_peak</sub> =50 mW | 30        | 40       | -          | dB         |
| Polarization Extinction Ratio          | PER                    | $CW, P_f = 30 \text{ mW}$                        | 15        | 20       | -          | dB         |
| Monitor PD Current                     | Im                     | $CW, P_f = 30 \text{ mW}$                        | 50        | 200      | 800        | μΑ         |
| Thermistor Resistance                  | Rth                    | $T_{LD} = 25^{\circ}C, B=3900 K$                 | 9.5       | 10       | 10.5       | kΩ         |
| 4D 1 1 1 1 C./1                        | 111                    | . •                                              |           |          |            |            |

<sup>\*</sup>Peak wavelength torelance of +/- 1nm is available as an option.

# 6. OUTLINE DRAWING




<sup>\*\*</sup>Pulse width of 50 ps (0.05 ns) could be achieved under gain switch operation.



QLD1061 C00033-10

# 7. PIN CONFIGURATION

| No. | Description | No. | Description   |
|-----|-------------|-----|---------------|
| 1   | TEC (+)     | 8   | NC            |
| 2   | Thermistor  | 9   | NC            |
| 3   | PD Anode    | 10  | Laser Anode   |
| 4   | PD Cathode  | 11  | Laser Cathode |
| 5   | Thermistor  | 12  | NC            |
| 6   | NC          | 13  | Case Ground   |
| 7   | NC          | 14  | TEC (-)       |



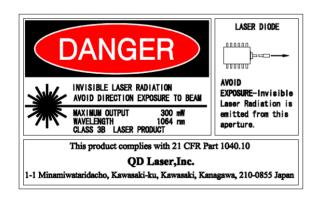
#### 8. NOTICE

#### • Safety Information

This product is classified as Class 3B laser product, and complies with 21 CFR Part 1040.10. Please do not take a look at laser lighting in operations since laser devices may cause troubles to human eyes.

Please do not eat, burn, break and make chemical process of the products since they contain GaAs material.

## • Handling products


Semiconductor lasers are easily damaged by external stress such as excess temperature and ESD.

Please pay attention to handling products, and use within range of maximum ratings.

QD Laser takes no responsibility for any failure or unusual operation resulting from improper handling, or unusual physical or electrical stress.

### RoHS

This product conforms to RoHS compliance related EU Directive 2011/65/EU.



#### QD Laser, Inc.

Contact: info@qdlaser.com http://www.qdlaser.com

Copyright 2009-2015 All Rights Reserved by QD Laser, Inc.

Keihin Bldg. 1F 1-1 Minamiwatarida-cho, Kawasaki-ku, Kawasaki, Kanagawa Zip 210-0855 Japan

All company or product names mentioned herein are trademarks or registered trademarks of their respective owners. Information provided in this data sheet is accurate at time of publication and is subject to change without advance notice.