

# Broadband High-Power Tm- and Ho-doped ASE Sources in the 2 μm Band

Wiktor Walasik, Alexandre Amavigan, Gustavo Rivas, Adrian Zepeda Robert E. Tench, and Jean-Marc Delavaux

wiktor.walasik@cybel-llc.com

CYBEL LLC, Bethlehem, PA, USA

Wiktor Walasik



- Motivation and Objectives
- Tm-doped non-PM ASE source ( $\lambda_{center} \approx 1880$  nm)
  - Single-stage
  - Dual-stage
- Ho-doped PM ASE source ( $\lambda_{center} \approx 2060 \text{ nm}$ )
  - Single-stage
  - Dual-stage
- Applications
- Conclusions



## **Motivation and Objectives**

#### **Applications:**

- Fiber-optic gyroscopes
- Illumination for night vision scopes & Semiconductor wafer processing
- Testing Tm- and Ho-doped fibers
- Testing of passive optical components

#### State of the art:

Low power ASE sources prone to self lasing

#### We deliver:

- High power (> 2 W) with no self lasing
- Center wavelength: 1800–2070 nm
- 20-dB bandwidth > 100 nm
- Compact, all-fiber PM or non-PM design



### Single-stage Tm-doped ASE Source

LIGHTING THE WAY



#### **Performance:**

- 200 mW of ASE generated centered at 1850 nm
- Counter-pumping more efficient than co-pumping
- 14% or 8% optical-to-optical efficiencies



### Single-stage TDF ASE: Spectrum

LIGHTING THE WAY





#### **Dual-stage TDF ASE Source**





#### **Dual-stage TDF ASE: Spectrum & PER**

Normalized spectra of TDF ASE source





- Dual-stage spectrum red-shifted by 30 nm
- No self-lasing observed
- H<sub>2</sub>O vapor absorption lines
- Random polarization state of the output



## **Dual-stage TDF ASE: Bandwidth**





## **Dual-stage TDF ASE: Stability**





## **Single-stage Ho-doped ASE Source**

LIGHTING THE WAY



#### **ASE source concept:**

- Unseeded amplifier (typical fiber length <5 m)
- Ho-doped fiber pumped by a fiber laser at 1860 nm
- Commercially available PM fibers and components



More on 1860 nm pumping efficiency: R. E. Tench, W. Walasik, and J.-M. Delavaux Journal of Lightwave Technology, 39, 3546 (2021)

#### **Performance:**

- 80 mW of polarized ASE generated centered at 2045 nm
- Counter- and co-pumping show similar efficiency (13%)
- 8% optical-to-optical efficiencies after PM isolator



## Single-stage HDF ASE: Spectrum

LIGHTING THE WAY





#### **Dual-stage HDF ASE Source**





### **Dual-stage HDF ASE: Spectrum & PER**



#### Dual-stage spectrum red-shifted by 20 nm

**Excellent PER > 32 dB with ultimate stability** 



## **Dual-stage HDF ASE: Bandwidth**



- Bandwidth decreases with increasing pump power
- Dual-stage ASE Source spectrum narrower than single-stage
- -20 dBs bandwidth ≈ 100 nm
- Dual-stage center wavelength largely independent of pump power ( $\Delta\lambda < 5$  nm)



### **Dual-stage HDF ASE: Stability**





## **Component qualification: monochromatic source**

2020 nm monochromatic laser source



Laser

Forward

Laser





1/30/23



## **Component qualification: ASE**





#### **Conclusions**

| Fiber   | Topology   | Power [W] | λ <sub>center</sub> [nm] | BW <sub>-20dBs</sub> [nm] |
|---------|------------|-----------|--------------------------|---------------------------|
| Thulium | СО         | 0.10      | 1865                     | 180                       |
|         | СТ         | 0.20      | 1850                     | 220                       |
|         | CT-CT      | 1.20      | 1880                     | 170                       |
| Holmium | СО         | 0.14      | 2050                     | 115                       |
|         | CT (PM)    | 0.08      | 2045                     | 120                       |
|         | CT-CT (PM) | 2.20      | 2060                     | 100                       |

#### ASE sources for 2 µm band:

- More than 1 W of broadband output power
- Great power and spectral stability
- Available with random or linear polarization
- Power and spectrum optimized by simulations



#### **CYBEL** offers NIR- and MID-IR ASE sources centered between 1800 and 2070 nm

#### Thank you for your attention

Wiktor Walasik





#### **Dual-stage TDF ASE: Bandwidth**







#### **Dual-stage HDF ASE: Bandwidth**

